
International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 95

DESIGN OF DISTRIBUTED PREFETCHING
PROTOCOL IN

PUSH-TO-PEER VIDEO-ON-DEMAND SYSTEM

Pankaj Bhambri 1 , Dr. O.P. Gupta 2

1 2 Department of Information Technology
1 Guru Nanak Dev Engineering College, Ludhiana

2 Punjab Agriculture University, Ludhiana
1 Email-pkbhambri@gmail.com

ABSTARCT:

Peer-to-peer networks have to streaming the video on the Internet. In Peer-to-peer systems, peer
interest plays the central role in content transmission and storage and each peer pulls content only if the
content is of interest. Once pulled content has been stored locally, that peer may then in turn distribute
this content to yet other self-interested peers. So, this system has to make more congestion and server load
in the network. In P2P streaming system, the upstream bandwidth of peers are larger than video
playback rate. This system does not overcome the upstream bandwidth limitation by server based stream
delivery. But, the push-to-peer system does not rely on content servers except in the push phase. So, this
system can overcome the bandwidth limitation. In this system, the uplink bandwidth is smaller than video
playback rate. In this project is content placement and associated pull policies that allow the optimal use
of uplink bandwidth in push-to-peer video-on-demand system. The initial content placement increases the
content availability and improves the use of peer uplink bandwidth. The mostly required videos are
proactively pushed to the set-top-boxes in the digital subscriber line networks during time of low network
utilization that is in the early morning. There are two approaches used for content placement and pull
policies, which are Full striping scheme and Code-based placement scheme. The client can easily
download and play out video from set-top-boxes. So, we can reduce server load, network load and
downloading time. In Full striping scheme, videos are strip into video blocks and push the distinct video
block into the set-top-box. This system has to provide high quality of video streaming and to reduce the
client’s waiting time. This system can reduce the server load, network load and congestion. In Code-based
placement scheme, videos are encoded into coded symbol by using rate less code algorithm. This
approach could eliminate the box failure in full striping scheme. When the client’s required data is not
available in the set-top-box, then the distributed prefetching protocol used to directly connect client to the
video server and streaming the video from video server to client.

Keywords: Full striping scheme, Code-based placement scheme, Upstream bandwidth, Distributed Prefetching
Protocol, Set-top-box, video streaming, Push phase, pull phase etc.

1. INTRODUCTION

1.1. Video-on-Demand System

Video-on-Demand (VOD) systems either stream content through a set-top box, allowing viewing in real time, or
download it to a device such as a computer, digital video recorder, personal video recorder or portable media
player for viewing at any time. The majority of cable and telephone company based television providers offer
both VOD streaming, such as pay-per-view, whereby a user buys or selects a movie or television program and it
begins to play on the television set almost instantaneously, or downloading to a digital video recorder rented
from the provider, for viewing in the future.
 Download and streaming video on demand systems provide the user with a large subset of VCR functionality
including pause, fast forward, fast rewind, slow forward, slow rewind, jump to previous/future frame etc. These
functions are called trick modes. For disk-based streaming systems which store and stream programs from hard

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 96

disk drive, trick modes require additional processing and storage on the part of the server, because separate files
for fast forward and rewind must be stored. Memory-based VOD streaming systems have the advantage of being
able to perform trick modes directly from RAM, which requires no additional storage or CPU cycles on the part
of the processor. It is possible to put video servers on LANs, in which case they can provide very rapid response
to users. Streaming video servers can also serve a wider community via a WAN, in which case the
responsiveness may be reduced. Download VOD services are practical to homes equipped with cable modems
or DSL connections.

1.2. Peer-to-Peer Network

A Peer-to-Peer (P2P) computer network uses diverse connectivity between participants in a network and the
cumulative bandwidth of network participants rather than conventional centralized resources where a relatively
low number of servers provide the core value to a service or application. P2P networks are typically used for
connecting nodes via largely ad hoc connections. Such networks are useful for many purposes. Sharing content
files containing audio, video, data or anything in digital format is very common, and real time data, such as
telephony traffic, is also passed using P2P technology. A pure P2P network does not have the notion of clients
or servers but only equal peer nodes that simultaneously function as both "clients" and "servers" to the other
nodes on the network. This model of network arrangement differs from the client-server model where
communication is usually to and from a central server.

1.3. Push-to-Peer System

In this paper, we have to design of a Push-to-Peer Video-on-Demand (VOD) system. In such a system, video is
first pushed (e.g., from a content creator) to a population of peers. This first step is performed under provider or
content owner control, and can be performed during times of low network utilization (e.g., early morning). Note
that as a result of this push phase, a peer may store content that it itself has no interest in, unlike traditional pull-
only peer-to-peer systems. Following the push phase, peers seeking specific content then pull content of interest
from other peers, as in a traditional peer-to-peer system. The Push-to-Peer approach is well-suited to cooperative
distribution of stored video among set-top-boxes in a DSL network [14], where the set-top boxes themselves
operate under provider control. We believe, however, that the Push-to-Peer approach is more generally
applicable to cases in which peers are long-lived and willing to have content proactively pushed to them before
video distribution among the cooperating peers begins.

 We begin by describing an idealized policy for placing video data at the peers during the push phase - full
striping and its consequent pull policy for downloading video. We also consider the practical case in which the
number of peers from which a peer can download is bounded, and propose a code-based scheme to handle this
constraint. We demonstrate that these two placement policies are optimal among policies that make use of the
same amount of storage per movie, in that they maximize the demand that the system can sustain. The
remainder of this paper is structured as follows. In Section 2, we describe Literature Survey. In Section 3, we
describe the controlled DSLAM setting, and the push and pull phases in more detail. We also summarize some
of the important differences between the Push-to-Peer and traditional peer-to-peer approaches for VoD. In
Section 4, we describe two policies for placing video data at the peers during the push phase.

2. LITERATURE SURVEY

The peer-to-peer concept has been applied to more general video-on-demand services. P2P networks for
streaming video on the Internet have generated a lot of interest recently. P2P-based streaming systems
completely rely on peer connections, which make the system vulnerable to peer or connection failures. Then
combine P2P techniques with the current server-client streaming model to build a hybrid system that is both
scalable and robust. First, propose a streaming system, BitTorrent Assisted Streaming System (BASS) proposed
by Danna. et al., [4] for VoD services, where we add the use of an external streaming server to a slightly

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 97

modified BitTorrent. Clients can simultaneously stream from the media server as well as each other via
BitTorrent P2P connections. By maintaining these connections, we can reduce the aggregate bandwidth used by
the media server and decrease client waiting times. BitTorrent Streaming (BiToS) proposed by Vlavianos. et al.,
[6] a protocol with the ability to support streaming based on BiTorent. We identify the piece selection
mechanism as the only thing that needs to be changed from the original BiTorrent protocol. BiToS becomes
aware of the streaming order of the piece, thus preferring pieces that will be played soon. BitTorrent has been
proved to be a very effective mechanism for P2P content distribution. The success of BiTorent lies on its ability
to distribute content quickly by utilizing the capacity of all the peers in the P2P BT network. A prefix caching
technique proposed by Sen. et al., [5] whereby a proxy stores the initial frames of popular clips. Upon receiving
a request for the stream, the proxy initiates transmission to the client and simultaneously requests the remaining
frames from the server. In addition to hiding the delay, throughput, and loss effects of a weaker service model
between the server and the proxy, this is simple prefix caching technique aids the proxy in performing
workahead smoothing into the client playback buffer. By transmitting large frames in advance of each burst,
workahead smoothing substantially reduces the peak and variability of the network resource requirements along
the path from the proxy to the client. The proxy prefix caching technique for peer-to-peer video streaming
require upstream bandwidth of a peer to be larger than video playback rate. However, most of the efforts have
focused on efficient tree and mesh construction, assuming the upstream bandwidths of peers are larger than
video playback rate. Under this assumption p2p systems can scale to support arbitrarily large numbers of clients.
In contrast, we can cope with uplink bandwidths smaller than video playback rate, a condition that holds in most
access networks, particularly DSL. More recently, Tewari. et al., proposed BitTorrent [7] based live streaming
service under the same assumption of limited upstream bandwidth. In both proposals, the upstream bandwidth
limitation is overcome by the assistance of server based stream delivery in their proposed systems. However, the
Push-to-Peer system does not rely on content servers except in the push phase.

 Our proposed scheme collectively balances all sub requests for a job. Another related area of work is the
data placement and pull scheme for video streaming services. Several methods have been proposed in the
literature. Particularly, random duplicated assignment strategy of data blocks and mirroring are proposed for
VOD servers by Korst and Bolosky et al.,[10] respectively to address the problem of disk failure. However, we
use a code-based placement that addresses the problem of box failures Rateless coding algorithm have been
proposed by Maymounkov. et al., [3],[11],[12]. While these works discuss how to use the codes to download
files using multicast/broadcast transmissions or using peer-to-peer networks, none of these works address the
usage of coding for video streaming or video-on-demand. Other work proposed the use of network coding to
accelerate file download in peer-to-peer networks or to ameliorate VOD for P2P. Recently Jin and Bestavros
proposed a scalable “cache-and-relay” approach [8] that could be used for scenarios similar to the one motivated
above. Using this approach, a recipient of the feed would “cache” the most recently played out portion of the feed
(after playing it out). Such cached content could then be used by other nodes in the system who request the feed
within some bounded delay. This process of caching and relaying the content was shown to scale well in terms of
server as well as network loads. In [9], a detailed analysis of this approach was presented There are two
problematic aspects of the cache-and-relay approach. First, when a node leaves the system, any other nodes
receiving the feed from that node are disconnected. This means that such nodes will experience a disruption in
service. Second, to resume, such discon nected nodes must be treated as new arrivals, which in turn presents
added load to the server (and network). This latter issue is especially significant because recent results by Jin and
Bestavros [13] have shown that asynchronous multicast techniques do not scale as advertised when content is not
accessed from beginning to end (e.g., due to nodes prematurely leaving the multicast and/or when non-sequential
access is allowed to support VCR functionality). Specifically, Jin and Bestavros showed that techniques that
ensured asymptotic logarithmic server scalability under a sequential access model would in effect behave
polynomially under non-sequential access models.

 Prefetch-and-relay protocol for scalable asynchronous multicast in P2P systems proposed by Sharma. et
al., [2] that allows a peer to serve as a source for other peers, while prefetching a portion of the stream ahead of
its play out time in Peer-to-Peer system. In contrast to existing cache-and-relay schemes, our scheme is more
scalable in highly dynamic Peer-to-Peer systems. This is because a departure of a peer does not necessarily force
its children peers (for whom it is serving as source) to go to the original server. Rather a child peer can continue
its play out uninterrupted from its prefetched data until it is covers a new source peer. The download rate is

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 98

sufficiently greater than the play out rate, our distributed prefetching scheme significantly reduces the load on
the server as it effectively increases the capacity of the Peer-to-Peer system. At the same time, clients can
achieve a better play out performance. More importantly, a client can proactively switch from one source-peer
to another in order to reduce the transmission delay of its download or to optimize the overall network link cost.
We have include that distributed prefetching protocol [2] concept in Push-to-Peer Video-on-Demand system[1].
The Push-to-Peer System design and analysis model is proposed by K. Suh. Et al.,[1]. This system described by
two approaches, which are full striping scheme and code-based placement scheme.

3. LITERATURE SURVEY

In this section we first propose the full striping data placement and code-based data placement schemes. In
contrast to full striping, the latter allows a box to download a video from a small number of boxes. This is useful
when the number of simultaneous connections that a box can support is constrained. VCR operations such as
jump forward, jump backward, and pause can be supported by both schemes.

3.1. Full Striping Scheme

A full striping scheme stripes each window of a movie overall M boxes. Specifically, every window is divided
into M blocks, each of size W/M, and each block is pushed to only one box. Consequently, each box stores a
distinct block of a window. A full window is reconstructed at a particular box by concurrently downloading M −
1 distinct blocks for the window from the other M − 1 boxes. Hence a single movie download request generates
M −1 sub-requests, each targeted at a particular box. A box serves admitted sub-requests according to the
Processor Sharing (PS) policy, forwarding its blocks of the requested video to requesting boxes. PS is an
adequate model of fair sharing between concurrent TCP connections, when there is no round-trip time bias and
the bottleneck is indeed the upstream bandwidth. We further impose a limit on the number of sub-requests that a
box can serve simultaneously. Specifically, to be able to retrieve the video at a rate of Renc, one should receive
blocks from each of the M − 1 target boxes at rate at least Renc/M, where Renc is the video encoding/playback
rate. Hence we should limit the number of concurrent sub-requests being served by each box to at most
Kmax

:=BupM/Renc, where Bup is the upstream bandwidth of each box. This approaches for handling new video
download requests that are blocked because one of the M − 1 required boxes is already serving Kmax distinct
sub-requests.

3.2. Code-Based Placement Scheme

We describe a modification of full striping, namely code-based placement, under which the maximum number
of simultaneous connections that a box can serve is bounded by y, for some y < M − 1. This scheme applies
rateless coding [3], [11].This rateless coding algorithm is describe in section C. A rateless code such as the LT
code [11] can generate an infinite number of so-called coded symbols by combining the k source symbols of the
original content. The code-based scheme, we have divides each window into k source symbols and generates Ck
= (M /(y +1))k coded symbols. We call C is the expansion ratio, where C > 1. For each window, the Ck symbols
are evenly distributed to all M boxes such that each box keeps Ck/M = (1 + є)k/(y + 1) distinct symbols. A
viewer can reconstruct a window of a movie by concurrently downloading any Cky/M distinct symbols from an
arbitrary set of y boxes out of (M − 1) boxes. The code-based scheme is similar to full striping in the sense that
distinct (coded) symbols are striped to all M boxes. However, unlike full striping, only y boxes are needed to
download the video. We now define the pull strategy used for the code-based scheme. The maximum number,
Kmax, of sub-requests that can be concurrently processed on each box to ensure delay free playback now reads
Kmax= (y + 1)Bup/Renc. Under the blocking model, a new request is dropped, unless there are y boxes currently
handling less than Kmax sub-requests. In that case, the new request creates y sub-requests that directly enter
service at the y boxes currently handling the smallest number of jobs. Under the waiting model, each box has a
queue from which it selects sub-requests to serve. Each new movie download request generates M −1 sub-
requests that are sent to all other boxes. Upon receipt at a receiving box, each sub-request either enters service
directly, if there are less than Kmaxsub-requests currently served by that box. Otherwise it is placed in a FIFO
queue specific to the box. Once a total of y sub-requests have entered service, all other M − 1 − y sub-requests
are deleted. Thus each request eventually generates only y sub-requests.

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 99

3.3. Rateless Code Algorithm

This section explains how to implement on-line codes. A more detailed description and analysis of the algorithm
is available in [3],[11],[12]. On-line codes are characterized by two parameters є and q (in addition to the block
size). Є determines the degree of sub optimality a message of n blocks can, with high probability, be decoded
(1+3є)n from output blocks. The first step of the encoding process is to produce a composite message by
generating 0.55qєn auxiliary blocks and appending them to the original message. Each auxiliary block is
computed as the XOR of a number of message blocks, chosen as follows We first seed a pseudo-random
generator in a deter ministic way. Then, using the pseudo-random generator, for each block of the original
message, we chose q auxiliary blocks, uniformly. Each auxiliary block is computed as the XOR of all message
blocks we have assigned to it. We append these auxiliary blocks to the original message blocks, and the resulting
n’= (0.55qє+1)n blocks form the composite message. We call the message blocks that were XORed to produce a
check or auxiliary block its adjacent message blocks. Decoding consists of one basic step: Find a check or
auxiliary block with exactly one unknown adjacent message block and recover the unknown block (by XORing
the check block and all other adjacent message blocks). Repeat this step until the entire original message has
been recovered.

4. PREFETCHING PROTOCOL DESCRIBTION

In this section described about distributed prefetching protocol in Push-to-peer System. Whenever the client
required video is not available in set-top-boxes, then its establish connection to video server. Then, this protocol
prefetch and store the content ahead of their play out time from video server. One client is streaming video from
video server at that time any other client request that same video to box, then requesting client is connected to
streaming client. If any content missing during time of streaming, then simultaneously establish another
connection to the server.Assume that each client is able to buffer the streamed content for a certain amount of
time after playback by overwriting its buffer in a circular manner.

Figure 1: Asynchronous Streaming

 As shown in Figure 1, R1 has enough buffer to store content for time length W1; i.e. the data cached in the
buffer is replaced by fresh data after an interval of W1 time units. When the request R2 arrives at time t = t2, the
content that R2 wants to download is available in R1’s buffer and, hence, R2 starts streaming from R1 instead of
going to the server. Similarly, R3 streams from R2 instead of the server. Thus, in Figure 1, leveraging the caches
at end-hosts helps to serve three clients using just one stream from the server. In Figure 2, by the time request
R2 arrives, part of the content that it wants to download is missing from R1’s buffer. This missing content is
shown as H in Figure 2. If the download rate is the same as the playout rate, then R2 has no option but to
download from the server. However, if the network (total) download rate is greater than the playback rate, then
R2 can open two simultaneous streams - one from R1 and the other from the server. It can start downloading
from R1 at the playback rate (assuming that R1’s buffer is being overwritten at the playback rate 1) and obtain
the content H from the server. After it has finished downloading H from the server, it can terminate its stream
from the server and continue downloading from R1. This stream patching technique used to reduce server
bandwidth. Assuming a total download rate of α bytes/second and a playback rate of 1 byte/second, the
download rate of the stream from the server should be α−1 bytes/second. Hence, for this technique to work α−1
≥ 1 => α ≥ 2. Hence, we need the total download rate to be at least twice the playback rate for stream patching
to work for a new arrival.

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 100

Figure 2: Asynchronous Streaming

 In the event that a client departs from the peer-to-peer network, all the clients downloading from the buffer
of the departing client will have to switch their streaming session either to some other client or the server. The
stream patching technique can be used by a client in this situation as well to avoid downloading from the server.
The stream patching technique may work in this situation even when the total download rate is less than twice
the playout rate, i.e. α < 2.

Figure 3: Delay in finding new download source

 When the download rate is greater than the playoutrate, a client can pre-fetch content to its buffer before it
is time to playout that content. Pre-fetching content can help achieve a better playout quality in overlay
multicast. In a realistic setting, there would be a certain delay involved in searching for a peer to download
from; for example, consider the situation depicted in Fig. 3. R3 starts streaming from R2 on arrival. After R2
departs, as shown in Fig. 3, it takes R3 D seconds (time units) to discover the new source of download R1. If the
pre-fetched “future” content in R3’s buffer, at the time of R2’s departure, requires more than D seconds (time
units) to playout (i.e. the size of the future content is greater than D bytes, assuming a playout rate of 1
byte/second) then the playout at R3 does not suffer any disruption on R2’s departure. If the size of the “future”
content is smaller than D bytes, then R3 will have to open a stream from the server, after it has finished playing
out its pre-fetched content, till it discovers R1. if the time required to playout the pre-fetched content is larger
than the delay involved in finding a new source to download from, the playout at R3 would not be disrupted
upon R2’s departure from the peer-to-peer network. Pre-fetching content is also advantageous when the
download rate is variable. A client can absorb a temporary degradation in download rate without affecting the
playout quality if it has sufficient pre-fetched content in its buffer.

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 101

4.1. Control Parameters

In this paper, we analyze the importance and effect of the following three parameters in achieving scalable (in
terms of server bandwidth), asynchronous delivery of streams in a peer-to-peer environment.

 Download rate
1) α = ---------------------
 Playout rate
Without loss of generality, we take the Playout rate to be equal to 1 byte/second and, hence the Download
rate becomes α bytes/second. We assume α > 1.

2) Tb : The time it takes to fill the buffer available at a client at the download rate.

 The actual buffer size at a client is, hence, α×Tb bytes. The available buffer size at a client limits the
time for which a client can download the stream at a rate higher than the playout rate.

 Future content

3) β = --------------------
 Past content

β represents the ratio of the content yet to be played out, “future content”, to the content already played out, past
content”, in the buffer.

4.2. Constraints in the case of an Arrival

For a new arrival R0 to be able to download from the buffer of R1, the inter-arrival time between R0 and R1
should be less than Tb. If R0 arrives more than Tb time units after R1, then part of the content that R0 wants to
download would have been over-written in R1’s buffer. If α < 2, then in such a situation R0 has no option but to
stream from the server. Hence, if α < 2, a new arrival at time t = t0 can stream from only those clients that
arrived during the interval TD = [t0−Tb, t0). If α ≥ 2 and R1 is over-writing the content in its buffer at the
playout rate, then R0 can take advantage of the higher download rate (compared to the playout rate) and the
stream patching technique to possibly avoid a complete streaming from the server and instead download from
R1 and only patch the missing content from the server. It is easy to verify that the size of the missing content
that R0 needs to download from the server, in order to be able to stream from R1’s buffer, cannot be greater than
the size of the available buffer at R0, which is α×Tb in our model. A newly arrived client R0 can download from
the buffer of R1 if the following conditions are satisfied:

• The inter-arrival time between R0 and R1 is less than Tb, or
• If the inter-arrival time between R0 and R1 is greater than Tb, then α should be greater than or equal to

2, R1 must be over-writing the content in its buffer at the playout rate and the size of the content
missing from R1’s buffer should be less than or equal to α × Tb.

The first condition ensures that the content needed by R0 is present in R1’s buffer. The second condition defines
the scenario in which the stream patching technique can be used by R0.

5. RESULTS AND DISCUSSIONS

We have implemented Push-to-peer VOD System using java with JMF. We have using socket programing for
implementation of video server and client module and then set-top-boxes implemented by oracle9i database.
This system is implemented by two approaches which are full striping scheme and code-based placement
scheme. The important videos are proactively stored on set-top-boxes. Whenever video is require to client which
is recontructed in target box from all other boxes. If, the required video is not available in set-top-box, then set-
top-box manager establishing connection between video server and client and streaming video. That video
prefetch and store ahead of play out time is done by using RTP and RTCP protocol in JMF.

In full striping scheme, the number of requests in progress varies from box to box, because a requesting
box does not place a request on it self. Also, the overall system service speed varies between (M-1)Bup and
MBup depending on System state: when a single video download takesplace, it proceeds at speed (M-1)Bup,
while an overall service rate of MBup is achieved when sub-requests are served on all boxes. The number of
sub-request is same on all box, and the total service capacity is also constant. Specifically, we consisder a total
service capacity of Btotal=MBup and assume this is stored evenly among active downloads. Denote by Lj is the
size of movie j in bytes and by Aj,m is amount of memory in bytes dedicated to movie j on box m. We shall

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 102

assume that a single copy of each movie is stored in system, which can be translated into the constraint Σm=1

M=Lj.

 In code-based placement scheme, we assume that a total storage capacity of C*Lj is denoted to movie j
, where C=M*(1+ є)/y+1 is expantion ratio. The solution based on encoding assumes that for movie j , a total
quantity of Aj,m≡C*L j/M data is stored on each individual box m. This data consist of symbols, such that for any
collection of y+1=M/C boxes, each movie can be reconstructed from the joint collections of symbols from all
these y+1 boxes.

0

1000

2000

3000

4000

5000

6000
10

0

10
00

20
00

40
00

60
00

80
00

10
00

0

no. of Boxes 'M'

m
ax

.r
eq

 s
er

ve
 b

y
B

ox
 'K

m
ax

'

FSS

CBS

Figure 4: Maximun number of sub-request served by each box in FSS and CBS Vs total no of boxes ‘M’ with
video encoding/play back rate Renc = 2 Mbps, upstream bandwidth Bup = 1 Mbps, coding overhead є = 0.05 and

C = 2.

0

50000

100000

150000

200000

250000

10
0

10
00

20
00

40
00

60
00

80
00

10
00

0

no. of Boxes 'M'

D
at

a
st

or
ed

 o
n

ea
ch

 B
ox

 in
 b

yt
es

FSS

CBS

Figure 5: Content stored on each box in FSS and CBS Vs total no of boxes ‘M’ with size of video Lj = 10
Mbytes and C = 2.

 Figure 4 shows that maximum number of sub-request serve by each box in FSS and CBS approaches
are varies with respect to number of set-top-boxes. These are described that FSS allows viewers to take
advantages of bandwidth from all M boxes regardless of number of served viewers, while CBS constrains
number of boxes. Also, the service rate are equally share in FSS approach because all boxes used for each movie
request . So, the service speed at FSS approch is less than CBS service rate. Because CBS approach required
constrains minimum boxes compared to FSS approach. So, the waiting time of client in CBS is more less than
the system in FSS approach.

International Journal of Research in Advent Technology (IJRAT)
Vol. 1, No. 3, October 2013, ISSN: 2321–9637

 103

 Figure 5 shows that amount of memory in bytes dedicated to movie j on box ‘m’ is varies with respect to
number of boxes increases in FSS and CBS approach. The CBS pushes 20 copies of videos to 10 boxes
collectively. On the other hand, the FSS pushes only one copy of the video. The FSS consistently outperforms
the CBS, even thougth the last scheme benefits from langer amount of data stored on each boxes.

6. CONCLUSION AND FUTURE DIRECTION

Push-to-Peer Video-on-Demand System has implemented by the two approaches with distributed prefetching
protocol in which the two approaches are full striping scheme and code-based scheme. The video server
proactively pushed the important video into set-top-boxes in client premises that in DSLAM in a DSL network.
The boxes are served the required video to clients perfectly. Then, the prefetching protocol streamed the video
to client, whenever the client required video is not available in set-top-boxes. This system could reduce client
waiting time, server load, network congestion and network load. The Project will be extended by client to client
streaming using prefetching protocol, while the same video is downloading from video server or another client.
If any content missing during streaming from another client or departure of that client, then it’s simultaneously
establish a connection to server and then download the missing content from server.

References

[1] K. Suh, C. Diot, J. Kurose, L. Massouli´e, C. Neumann, D. Towsley, and M.Varvello., (2007). Push-to-peer video-on-demand system:
design and evaluation. IEEE Journal in Communications. volume 25, issue 9, pp. 1706-1716.

[2] A. Sharma, A. Bestavros, and I.Matta. (2006). dPAM: a distributed prefetchingprotocol for scalable asynchronous multicast in P2P
systems. IEEE Conference on Computer Communication. Boston University USA. pp. 1-13.

[3] P. Maymounkov and D. Mazieres. (2003). Rateless codes and big downloads. International Workshop on Peer-to-Peer Systems.
Newyark University. pp. 11-16.

[4] C. Dana, D. Li, D. Harrison, and C. Chuah. (2005). BASS: BitTorrent assisted streaming system for video-on-demand. IEEE seventh
workshop on Multimedia Signal Processing.

[5] S.Sen, J. Rexford, and D. Towsley. (1999). Proxy prefix caching for multimedia streams. IEEE Conference on Computer
Communication. pp. 1310-1319.

[6] A. Vlavianos, M. Iliofotou, and M. Faloutsos. (2006). BiToS: Enhancing BitTorrent for supporting streaming applications . IEEE
Global Internet Symposium, Barcelona.

[7] S. Tewari and L. Kleinrock. (2007). Analytical model for BitTorrent video streaming. IEEE National Institute of Multimedia
Education Workshop. pp. 976-980.

[8] S. Jin and A. Bestavros (2003). OSMOSIS: Scalable Delivery of Real-Time Streaming Media in Ad-Hoc Overlay Networks. IEEE
ICDCS’03 Workshop on Data Distribution in Real-Time Systems.

[9] Y. Cui, B. Li, and K. Nahrstedt. (2004). oStream: Asynchronous Streaming Multicast in Application-Layer Overlay Networks. IEEE
Journal on Selected Areas in Communications. Volume 22, issue 1.

[10] J. Korst. (1997). Random duplicated assignment: An alternative striping in video servers. ACM Multimedia.
[11] M. Luby. (2002). LT Codes. IEEE Symposium on foundation of computer science.
[12] Petar Maymounkov. (2002). Online Codes. Technical Report TR2002-833. New York University.
[13] S. Jin and A. Bestavros. (2002). Scalability of Multicast Delivery for Non-sequential Streaming Access. SIGMETRICS’2002: The

ACM International Conference on Measurement and Modelling of Computer Systems.
[14] http://www.iec.org/online/tutorials/dslam.

